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TECHNICAL NOTE NO. 1751

BUCKLING OF A LONG SQUARE TUBE IN TORSION
. AND COMPRESSION

By Bernmard Budiansky, Manuel Stein, and Arthur C. Gilbert
SUMMARY

' The buckling of an infinitely long squere tube under combined
torsion and compression is Investigated by means of an exact energy
method utilizing Lagranglian muitipliers. An Interaction curve is
obtained from which it 1s possible to determine the amount of one
loading required to produce buckling when a given emount of the other
loading 1s present.

INTRODUCTION

The local buckling of a long, thin-wall, square tube subJected to
& combinatlon of torslon and longitudinal -compression is Investligated
theoretlically in the present paper. The walls of the tube are considered
to be iInfinitely long flat plates continuous over nondeflecting line
supports at the corners. An exact theoretical analysis of the problem
by meansg of the ILagrangian multipller method, presented in detail in
the appendix, is used to derive an interaction curve which glves the
cambinations of torsion and compression required to produce local
buckling.

SYMBOLS
b width of tube wall
t wall thickness
E Young!s modulus
" Poissonts ratio \
B3 .
D plate stiffness in bending (-——mm—
12(1 — p2)

o compressive stress

e N bttt X
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'

T ghear stress
T torque
k compressive—stress coefficlent beat
C . ? D
b7t
kg ghear—stress coefficient (7 —
7D
Ry ratio of shear stress present to critical shear stress for
pure torsion
R, ratio of compressive stress present to critical compressive
stress for pure campression
x plate coordinate parallel to length
¥y plate coordinate parallel to width
W deflection normal to plane of plete

8m,by,Cp,dy Fourler coefficlients

at,n? Tagranglan multipliers

A helf wave léngth

v internal bending energy

T, . external work of campressive stress ‘
Ty . external work of shear stress

m, ] integers .

RESULTS AND DISCUSSION

The crifica.l combination of compressive and shear stress of a
long square tube (see fig. 1) is given by the formulas

72D
U—kcbet_

and

72D

T e R



NACA TN No. 1751 3

where T 1s related to the total torque T by the rormula

T
T = e
obet

An interaction curve for the critical combinations of the stress
coefficlents ¥, and kg 1s presented in figure 2; the theoretical
enalysis from which thls curve 1s obtalned is given In the appendix.

Essentlally the interactlion curve 1s a curvillnear portion Jolned
to a stralght portion; it is of interest to compare this curve with the
Interaction curve for an isolated simply supported plate also shown in
figure 2 (see reference 1). The disparity in behavior of the two curves
may be explained in terms of nodel pattermns. In the case of the isolatsd
plate, the inclination as well as the spacing of the transverse nodal
lines ad just themselves s0 as to cause the buckling stress to be a
minimim. Thus, as relatively more compression is applied, thé nodal lines
become less inclined, until, for the case of pure compression, they are
straight and perpendicular to the edges of the plate. However, in the
case of the gquare tube, the Inclination and spacing of the nodal lines
are always constralned to be such that a nodal 1ine bs combinuous all
ths way around the tube. But, as relatively more compression is applied,
at a certaln ratio of compressive to shear stress, the nodal limes
suddenly cease to be Inclined and became straight and perpendicular to
the tube corners (and thus still remain continuous around the tube).
Buckling with this type of nodal pattern corresponds to the stralght
portion of the interactlion curve. The closeness of the two curves in
the shear—predominating range is due to the fact that the nodal pattern
for the isolated simply supported plate iIn pure shear happens to be one
that would very nearly be continuous eround a square tube made up of
Tour such plates. _
The Interaction curve for the sguare tube 1s shown in stress-ratio
~form In filgure 3 and 1s compared with a parabolic interaction curve that
is ghown In reference 1 to hold very closely for an isolated plate
having equal elastic restraint of any magnitude along the edges. The
comparison shows clearly that, at least in the campression—predominating
range, it would be unduly conservative to comslder the walls of the tube
to behave as isolated elastically restrained plates.

CONCLUDING REMAPKS

A theoretlcally camputed Interaction curve for the buckling of an
infinitely long square tube in torsion and compression is presented.
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From this curve it can be concluded that an appreciable amount of torsion
may be present without in any way reducing the compression required for
buckling.

ILangley Aeronautical I.a.bora:bory
National Advisory Committee for Aeronau'bics
Iengley Field, Va., September 10, 1948



APPENDIX
THEORETTCAL ANATYSTS

For the purpose of the present analysis, the square tube 1s
idealized into four infinitely long flat plates continuous over ndn—
deflecting line supports. Evidently two distinct types of buckle
pattern must be comsidered. The first type (see sketch) glven by

= = s
w_sinbsinb ‘

represents the case In which the nodal lines are straight and do not '
edvance longltudinally as they proceed around the tube:

y
A
Tl-1+«1=-T1+]-1+1-
+
P |l + | -1+ ]=-]+]-=-]+
.’_
P |-+ |-+ -]+ -
4
S T R DT I A S P S
4

bl

For this buckling mode, the tube will buckle only if

72D

o=4 —

b2t

This type of buckling 1s represented by the stralght portlon of the
interaction curve (see Pigs. 2 and 3); for this type of buckling, the
shear stresses do no external work.

i e i e i r s e e oy e S e e e = o o T e e =
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In the second type of buckling deformation, the nodal lines are
inclined and advance longltudinally exactly one full wave length as they
traverse the four walls of the tube as shown In the following sketch:

y

7T 7T
1777777
77777
{X7 7777

From the general remsrks concerning Fourier series in appendix B of
reference 2, 1t is seen that in the reglon (O,\), (0,2b) the deflec—

tion may be glven by

[t o' e o e o e o]

x

© )

w = gin &% E amsingibq;+ E bmcoslenf.—g
ml,3’5’... ml’3’5,...

+ cos = E %smmﬁ£+ ; dmcosl;—fg‘z (1)
M e,3,5,... m=1,3,5, ...

(Single, rather thasn double, Fourier series are required because the
deflection is simusoidal along any line in the infinite direction.)

This function satisfies the requirement that
w(x,y) = —w(x,y+2b)
Additional conditions that must be satisfled are

w(X,y) = w()\.—x,b—y) (2)

w(x,y) = —r(A—x, 3b-y) (3)
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Equations (2) and (3) are, respectively, conditions  f symmetry in
the region (0,A), (0,b) end antisymmetry in the region (0,A), (b,2b).

m=l,

These conditions are fulfilled by making by = ap(-1) 2 ama
il

2
d, = —Cm(—l) . Thus the deflection function becames

m—1
o] ~ 2
= X myty ‘ iy
w = sin 2% E %smﬁ+(—l) cos ==
m=1,3,5,.0. ;
o m—1
2
+ cos ZX E cml|ein B~ (1) cos ZEL ()
A 2b 2b
m=1,3,5,...

This function wlll be used in an exact stability analysis by the
Lagrangian multiplier method as described in referemnce 2.

-

The boundary conditions of zero deflectlon along the idealized
supports (corners)

w(x,0) = w(x,b) =0

lead to the constraining relationships

m—L

> e)% =0 (5)
=1,3,5, ...
and
© m—l

> e ? oo (6)

m=1,3,5,...

G M S —
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The internal emergy V and the extermal work of the stresses T,
and T, are glven by the expressions

_D 32w aaw 1|25 32w
V-E'IJ; 322 372 -2t - anye <ax>

0

Substituting the Fourier expansion of w (equation (4)) into the
energy expressions ylelds

vV = D Z (b + m2B2)2(8m2 + cma) (7)
326283 m-1.3,5,...

gD 00 e
=2 ST

\
— (en® + cg?) (8) "
2v*p m=1,3,5,...

T

Ty = ks“? > mamcm(—l)mal (9)

b m=1,3,5,...
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where
= X
B = b
b2t
ko = 0 —
72D
and.
2
kﬂ =T b—t
D

The functlon to be minimized 1s

w ol o m=l
2 2
F=V~T, —T, -af m=1§35 (1) ap — 1t nr=1§35 (1) Ch
(10)

Minimizing equation (10) with respect to the coefficlents ay and cjy
yields

b )
JF o 2
Sa—J = (b + 32;32)2&J - l6koB2aJ + 161:5333(—1) cy—al-1) =0 (11)
and
L L
OF

" (+ + 32132)26,3 - 161:c132cJ + 161:8333(—1) e ag — n(-1) 2 _o0 (12)
[¢]
'j .

o e —
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waere
J=1,3,5e..
2,3
S 16b°B
&
and
L 16b°p3
2D

After simplification, equations (11) and (12) becoms

Pinc
2
Aoy + B‘.]c:'j = a(-L)

and
=
2
Byay + Agey = (1)
where
Ay= (b + 2p2)° _ 16k,p°
and

=t
2
B, = 16kp33(-1)
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Then
=L =
2 2
a. = AJCL(—].) - Bjﬂ(—l) (13)
! A2 —B,2
J J
and
2 =L
2 2 N
_ AJT](-—].) - Bjcx,(—l) (14)
82 - By '

Substituting for aj and by in the constraining relationships (5)
and (6) yilelds

Ama, — Bpn
Ei: ——— =0 (15)
m=1,3,5,... An® — Bp®

0

E Apn — Bpa
—_— =0 (16)
m=1,3,5,... Ame "Bme '

For the Iagrangian multipliers, « and 1, to have values other than zero,
the condlition that must be satlisfied 1s

o] 2 [ 2 ’ :
> = S m
- =0 (17)
<;=1,3,5,... AnP "Bm%> (;:1,3,5,... Ap® -Bm?>
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Equation (17) can be factored into

i 1 _-o (18)

m=1,3,5,... m * Bn

end

, | S = 0 (19)

m=1,3,5,... Ay — By

Both equations (18) and (19) will give identical results. The positive
or negative sign merely indicates the directlon of shear. ’

Equation (18) may be written

(oo}

0= > = — (20)

m=1,3,5,... , o ) >
(4 + w2p2)" — 16k,p2 + 16k mp3(-1)

The critical combination of compressive—stress coefficient k., and
gshear—stress coefficient kg for an infinitely long square tube cean be
calculated from equation (20). For a specified value of one of the
gstress coefficients and wave—length ratio B, the corresponding value of
the other stress coefficient that will satisfy equation (20) can be
obtained. This procedure is used for several different values of B
until a minimum value of the correspanding stress coefficient is obtained.’
The curvilinear portion of interaction curve was drawn using these

minimm velues. (See table 1.
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TABLE 1
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CRITTICAL COMBINATIONS OF STRESS COFFFICIENTS AND RATIOS

. Compression Shear
k, R, kg Rq
0 0 5.343 1
2 .50 3.92 T35
3 .75 3.03 .568
3.8 .95 2.25 oo
N 1 2.00 .37k
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Figure 1l.- Long square tube in torsion and compression.
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Square tube

Simply supported

ol fla;'r plate \

Figure 2.- Critical combinations of shear-stress and compressive-stress
coefficients for buckling of a long square tube in torsion and
compression. ‘
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1.0

Square tube
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Elastically restrained )\
flat plate \

ar : e | \

2
\
O 1 1 1 1
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Figure 3.- Interaction curve in stress-ratio form for buckling of a
long square tube in torsion and compression. )




